
AD-A127 330 TESTING OF ONCURRENL PROGRAMS AND PARTA 1/
SPECIFCATIORS(U MARYLAND UNIV COLLEVE PARK DEPT OF
COMPUTER SCIENCE D HAMLET SEC 82 TR-82/13

UNCLA M EE
omso

NOuNhT

L

1t5il4l! ~m1

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

II.

II

DEPARTMENT OF COMPUTER SCIENCE

* THE UNIVERSITY OF MELBOURNE

CD

83 04 2 1

AIR FORCE OyFFCE OF SCIENTIFIC RE
EqV - P_

NOTICE OF ' .X2TT;L TO DTIC
This cc,- ,t

approve!
13

DistrV - ' -"

Chief, Ioch ,'.O-I:forwation Division i

TESTING OF CONCURRENT PROGRAMS
AND PARTIAL SPECIFICATIONS

Dick Hamlet

Technical Report 82/13
December, 1982

Department of Computer Science ,"I'r

University c,- Melbourne
Parkville, Victoria 3052 ,

Australia

- I -Abstract
The testing roblems of concurrent systems include those of
sequential rograms, but there are two additional difficulties:

) (1) the sche uling of tasks may alter the behavior, making tests
misleading; --2)- testing may be conducted at an early stage of
development, by users who are not software experts. Concurrent-
process systems can be modeled by a collection of finite-state
transducers, in a way that displays their unique problems. The
specification languages PAISLey and Gist approach the definition

r of concurrent systems differently, but both permit users to exe-
cute partially defined systems. The declarative language PROLOG,
although not explicitly designed for concurrent progzamming, ex-
hibits similar characteristics. Prototype execution has some
unexpected implications for testing, and for final implementa-
tion. -

+

+On leave from Department of Computer Science, University of

Maryland, College Park 20742, U S A. This work was partially sup-
ported by USAFOSR grant F49620-80-C-qGn.

£ i-

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Wghon Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS, BEFORE J:OMPL ETING FORM

1. REPORT NUMBIP.- ,2. GOVT ACCESSION NO S. RECIPIENT*S CATALOG NUMBER

"--SR.'TR- 83-0306 1A -AI:)e7 33
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

TESTING OF CONCURRENT PROGRAMS AND PARTIAL TECIiNICAL
SPECIFICATIONS S. PERFORMING ORG. REPORT NUMBER

TR #82/13
7. AUTHOR(Q) S. CONTRACT OR GRANT NUMSER(a)

Dick Hamlet F49620-80-C-0/

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK

Department of Computer Science AREA 6 WORK UNIT NUMBERS

University of Maryland PE61102F; 2304/A2
College Park MD 20742

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Mathematical & Information Sciences Directorate DEC 82
Air Force Office of Scientific Research 13. NUMBER OF PAGES
Bolling AFB DC 20332 12

14. MONITORING AGENCY NAME & ADDRESS(It diflerent from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
ISs. DECLASSIFICATION,'DOWNGRADING

SCHEDULE

1S. DISTRIBUTION STATEMENT (of thle Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract nteroed in Block 20. iI dilioront from Report)

IS. SUPPLEMENTARY NOTES

I1. KEY WORDS (Continue on rover&* side Ii necessary and identify by block number) - - " C0

" 20. ABSTRACT (Continue an reveres aide It nec.sa. and identify by block fue..
The testing problems of concurrent systems include tho*b of sequential programs,
but there are two additional difficulties: (1) the scheduling of tasks may
alter the behavior, making tests misleading; (2) testing may be conducted at an

early stage of development, by users who are not software experts. Concurrent-
process systems can be modeled by a collection of finite-state transducers, in

a way that displays their unique problems. The specification languages
PAISLey and Gist approach the definition of concurrent systems differently, but
both permit users to execute partially defined systems. The (CONTINUED)

DO I . 1473 UNCLASkIFRD

gCTV CLASAIFICATIO. 00' ?"IS PAGE I-efto DNSe *tred)

88 04 07 0 1s
- .*----..- ~ -- *.1

UNCLASSIFIED
SECURITY CLASSIFICATION O THiS PAGE(Menba Data Eeaad)

ITEM #20, CONTINUED: declarative language PROLOG, although not exlicily
designed for concurrdht programming, exhibits similar characteristics.
Prototype execution has some unexpected implications for testing, and for
final implementation.

/7

UNCLASSIFIED

IScuR TY CLASSFICATION Op gS PASE"I Ow. DU RM".1 __ __ _____

1. Software Implemeted for Parallel Processing

Testing of any software faces the problem of insufficient data--the cases used
may have failed to expose a fault that wil be excited later in some untried
case. For concurrent systems there is an additional probleib posed by
scheduling of the cooperating processes: test success for one case may be an
accident resulting from a lucky interleaving of process actions.

Testing has assumed a new aspect with the appearance of executable
'specifications. Specification languages are intended to keep the end user

informed about a system under development, by allowing test execution early in
the requirements/specification stage. If the results of these tests are
misleading, both the user and system developer may be lulled into a belief
that faulty specifications are correct. Execution of unfinished
specifications makes it more likely that the test results will be
misinterpreted.

After presenting a simple model of parallel computation, this paper gives
brief descriptions of several executable specification languages, and
considers their testing problems.

2. A Simple Model of Parallel Computation

Languages for parallel programming and specification of systems to be
implemented as cooperating processes are necessarily complex and powerful.
But the essential difficulties of testing such programs can be understood in
terms of a model in which each process is a named nondeterministic finite-
state transducer with empty moves, modified to communicate with other
processes. To this end a transducer (process) may change state on the basis
of symbols obtained from other transducers, and may output to other
transducers. This communication takes place as follows: any interprocess
output produced is appended to one of a finite number of labeled
communications strings, and interprocess inputs are obtained from these
strings by name. The difference between a collection of such transducers and
conventional ones is that the input (and communications strings) are thought
of as dynamic objects. The transducers are imagined to be active in parallel,
with their transitions occurring asynchronously. Should any process need a
symbol when the necessary string is empty, it waits until there is a symbol

* available. Any of the several processes can consume a symbol that appears on
the input or communication strings. Where more than one possibility exists
for the disposition of a symbol, all the choices may occur. (However, each
transition is completed before another begins, so the entire system operates
in a series of discrete steps, without any real simultaneity.)

For example, the collection of three process (A, B, C) shown below will
respond to strings of 'a' and 'b' symbols before '#' and output 'Y' if there
are the same number of each, or 'N' if there are not. Inputs are shown to the
left of the bar, and where not all possibilities are listed, empty input is
implied. To the right of the bar are outputs, which may also be empty. The
subscripts refer to distinct communications strings; external input and output

are not subscripted.

Aa a B b 1b 2

Processes A and B copy symbols (respectively) onto communications strings 1
and 2. Process C:

a1*N
C ##

2

then judges the pair of communications strings and produces the proper result.
The computation is controlled in that it is driven by the input--each symbol
can activate only one of the processes--but when characters follow the 1#f,
processes A and B continue to add to the communications strings, although this
does not alter the output.

This language isn't very like actual specification languages, but it
exhibits the features necessary for a discussion of testing. In it, programs
can be written so that they cooperate In a perfectly deterministic way,
synchronized so that the pattern of which process is active is controlled at
all times. It is also possible to write programs with more chaotic patterns
of cooperation, including the possibility of "deadlock." Deadlock is defined
as a situation in which all processes are in an interprocess input state, and
the necessary symbols are not present. This situation will then persist. The
cases in between are the ones of interest: the pattern of process activation
has many possibilities, but none of these lead to deadlock, and the overall
input-output behavior of the system is the specification. In the example
above, the computation is synchronized until '#' is seen in the input, then
there are several ways that the processes can be interleaved. However, the
output does not depend on which sequence occurs; indeed, if input following
the '#' is slow in coming, the output appears before its arrival.

* ' Such operational specifications are not necessarily functional (as the
example is), in the sense that for a single input string there is at most one
output-string possibility. It can happen that there is competition for an
input or.communications-string symbol, and depending on which transition is
taken, the outcome differs. A system is consistent if this cannot happen; that
is, for each input, the same output must appear no matter which choices are
made about dispersing input or communications-string symbols. For a given
input, consistency can be checked by trying all the sequences, but in practice

2

the task is combinatorically intractable.

To illustrate nonfunctional behavior, consider the example above, but with
a slight change intended to make it more efficient. Instead ofcollecting all
the input symbols on two strings, add to process A an additional transition
that matches and discards adjacent pairs, so that it becomes:

a a1

A

a,

but processes B and C remain the same. The new specification has some

behaviors that are the same as those of the original, because the transition
added to A is not chosen in preference to the original one in B; it has some

new behaviors that lead to the desired result in the desired way; but, it has

some perhaps unexpected behaviors that lead to inconsistent results. For
example, on input

aabbfb

all three situations can occur, the last because the extraneous symbol causes
the new transition in A to be taken in preference to the matching operation in
C, with the result that the two communication strings do not balance.

It is always possible to control undesirable behavior by incorporating a
kind of scheduling control into the system being designed: one communications
string can be used to record the sequence of activations, and a process can
examine it for correctness. As a final element in our model, this idea is
given a convenient expression. Imagine that as the processes are activated, a
"control string" records the sequence of process names. For example, in the
system with multiple behaviors described above, the control string might
contain:

AABBCCBCC (output Y)

AACBCC (output Y)

AABBCACC (output N)

(among others) for input aabb#b , corresponding to the cases described above.
**., Along with the processes, our model then allows a regular expression to

constrain the contents of the control string. A control string not in the
language described by this "control expression" cannot occur. In the example,

a control expression of

(A I B) C (A 1 B)

would confine operation to the desired cases. (The control-expression is not

an accurate description of the actual possibilities; it merely omits those we
want to reject.)

3. Ezeoutable speWificatto languages

In the conventional software life cycle, requirements are given to a
professional organization where technical development takes place, later
culminating in software delivery to the end user. Because the communication
between users and software professionals is poor, and because technical
decisions alter the software's capabilities, .it is commonplace to find that
although the developer believes requirements are satisfied, the user
disagrees. Evidently the only way to attack this problem is to make
requirements more precise, with less room for differing interpretations.
Professionals naturally use programing languages, with their carefully
defined syntax and semantics, as a model for what a requirements/specification
language should be. Precision in stating requirements should benefit the
software developer independent of communication with users, because formal
languages sharpen ideas and encourage analysis. However, from the user's
side, the direct advantage of formal requirements is less clear. The user has
no expertise save in his area of application, which will be only dimly
reflected in a formal language, so he will still have to deal with computer
experts in unfamiliar terms.

Two characteristics of formal requirements languages can help reduce the
odds against the user. If a specification is executable even when unfinished,
it can be used as a "prototype" with which a user can experiment. As each
technical decision is made, the user can see it reflected in a prototype, and
express immediate approval or disapproval. Tests of complex systems are not a
panacea, even when the systems are completely implemented and considerable
thought given to the test plan. A user cannot be expected to devise and(monitor anything like an acceptance test of requirements, particularly with a
changing prototype. It is therefore important to investigate the properties
of such tests.

This section briefly describes three languages now under development,
relates them to the concurrent-process model of Section 2, and describes the
execution of an unfinished specification. Each of these languages has many
features not described here, features which are advantageous to the writer and
reader of specifications, but irrelevant to the problems of testing.

3.1 PAISLey

A PAISLey (Process-oriented, Applicative, Interpretable Specification
Language) specification [1] is a fixed collection of processes, each
constrained to act in a cyclic fashion, communicating through named message
channels. Each process is described as a function mapping a data type onto
itself, and one cycle of operation corresponds to the evaluation of the
process function for some input, resulting in an output which becomes input to
the next cycle. Process functions are defined using three devices: (1)
auxiliary functions, defined in the same way as process functions, but without
autonomous existence; (2).MoCarthy conditionals in which a sequence of tests

°* is used to select a value; and (3) "exchange functions" for interprocess
communication. Since each of these devices has a functional appearance, they
are combined using composition alone. Auxiliary functions are thus like typed
pure-LISP functions (except for the exchange functions); process functions are
the same, but are invoked repeatedly using each result value as the next
input.

PAISLey processes interact only through the evaluation of exchange
functions. Each such function names a channel, and when functions with the
same channel name are evaluated in two processes, they may synchronize and
exchange parameters. The synchronization may be required, so that evaluation

4

of the exchange function is not complete unless two processes do match
channels; or, it may be allowed to fail. Using these two mechanisms,
processes can be forced to synohronize, or can continue after a failed
attempt. Constraints on process execution may be supplied- in the form of
timing information. Any function may be given (for example) a minimum or
maximum time for evaluation.

The collection of processes that is a PAISLey specification is imagined to
behave in consort. The function evaluations within each process are performed
independently, except where exchange functions force an ordering. Timing
constraints can make synchronization impossible, or eliminate otherwise-
possible orderings. For example, a process that is required to complete its
cycle in less than 1 second cannot synchronize once each cycle with another
that is required to take longer than 1 second, nor can it use an auxiliary
function with a 2-second evaluation time. There are in general many orderings
of the independent process cycles that meet the timing and synchronization
constraints of the PAISLey specification. The collection ofthese proper

behaviors is the meaning of the specification.

An unfinished PAISLey specification may have missing processes, and hence
exchange functions in other processes may not be matched. Or, auxiliary
function definitions may be missing. Both situations are part of the
specification methodology: missing processes correspond to sections of the
specification that are not yet developed; missing functions correspond to
refinements to be made later in the usual top-down way. A missing auxiliary
function and an exchange function whose matching channel is in a missing
process both appear as undefined functions. Finally, timing constraints may
be missing or weaker than they should be, permitting some behavior patterns
that were meant to be excluded.

Execution of a PAISLey specification [2] requires as "input" those
auxiliary-function values that are undefined, and similarly values for any
unsatisfied exchanges. Because these inputs are coupled with "output" that is
the corresponding parameter value, it is convenient to supply them

interactively, and with prior knowledge of the output. Then the execution of
processes may be completely determined by the required synchronizations and
timing constraints. However, the PAISLey execution system does not attempt to
determine if this is so, but rather chooses random timings that meet the
constraints, leaving undetermined scheduling choices to the human user, who
also supplies the inputs. If timing constraints are violated during
execution, the test is terminated. There is no backtracking to attempt to
determine if different random timing choices, or different scheduling
decisions, would have satisfied the constraints. Thus the direct execution of
a specification can fail when there exist behaviors that would meet the
specification. On the other hand, when direct execution of a specification
succeeds, there may exist other ways to meet the specification with different

.' behavior. The latter is particularly likely if the user had to make many
scheduling decisions, since the timing characteristics of the system remain
relatively underspecified. As recompensW for these defects of direct
execution, it is efficient and easy for an inexpert user to control.

The finite-state model of Section 2 is conceptually close to a PAISLey
specification, except that the power of individual processes may be beyond
that of the finite-state, and the interprocess communication channels are more
flexible than the communication strings taken there. The cyclic nature of
processes can be captured by insisting that the finite-state transitions
include proper loops, and the possibility of a bypassed synchronization is
modeled by nondeterministic machine transitions. Some PAISLey timing
constraints can be modeled by the control expression, but not in a very
natural way: the times must be converted into the patterns they establish.

11 ,

3.2 Gist

A Gist specification £3) has roughly the following components-:

Types, similar to those in a strongly typed programming language.

Relations, similar to boolean procedures of a conventional programming
language, with parameters of the declared types. Quantifiers may appear
in relations, with range the collection of objects created by actions.

Actions, which either create or delete objects (of declared types) or
relationships (assertions that relations hold). These may be combined in
conventional ways, by sequence, iteration, etc.

Demons, processes activated by a trigger relation. The demon includes
actions; after they are performed the process is deactivated.

Constraints, assertions that relations always (or never) hold.

The meaning of a Gist specification is that demons' actions are performed

whenever the triggering relation holds, giving rise to collections of possible
actions that arise from different time sequences (should more than one trigger
at the same time). The intent is that the proper system behavior is among the

possibilities. However, many of the sequences are unwanted, and these are to
be eliminated by the constraints. When a sequence violates a constraint, it
is not part of the specification meaning.

An unfinished Gist specification may have missing demons or actions
missing within a demon (so that intended actions are not performed); or,
missing or too-weak constraints (so that some undesirable action sequences are
not eliminated). Gist favors specification construction by progressive
elimination of the latter: beginning with action sequences that are too
broad, constraints are added to successively refine the behavior.

A Gist specification can be executed directly [4]. Given an initial
universe (which may be empty if the specification has an "input" portion), the
execution is a simulation whose events are the demons triggered by the state
of the universe, and whose actions transform that state. The possibility of
many demons triggering at once, with different successive states depending on
the sequence of their actions, provides the leeway for constraints to reject
some simulations. A Gist interpreter therefore simulates one of the action
sequences, using any ordering of demons, until a constraint is violated, then
backtracks to try a different order. This execution can be very inefficient
if there are many sequences and most are eliminated. However, of more concern
is the case of a too-easy success: if the simulation chosen happens to be one

among many that differ widely, execution can mislead the user into thinking
that an unfinished specification is adequate. The effect is particularly
pernicious if the user controls execution by selecting demon ordering, since
then he may unconsciously select the sequences he hopes to have specified.

Although the actions of Gist demons do not correspond very well to
finite-state behavior, and communication among demons uses a global state that
is not captured well by communication strings, the simple model of Section 2
roughly describes the interplay of demons' actions. The model does even les
well with Gist constrairts. Its control sequences have the ability to forbid
behaviors as onstraintf do, but the latter are in a declarative rather than
an operationm "yle .4 may be expressed in terms of the state as it
evolves.

Despite the power of Gist constraints, they cannot express such properties
of a specification as consistency. These ,-ist be proved outside the language,
because the quantification in constraints is over objects of one input
universe, not over all universes. In such metaproofs, the- constraints play
the major role, however. A proof of consistency could be attempted by a
theorem prover, working in a first-order system whose objects included input
universes, and using the Gist constraints.as axioms.

3.3 PIROLOG

PROLOG is usually considered to be a programming language instead of a
specification language; it makes no explicit provisions for concurrent
processing. However, its declarative form, and the need to produce efficient
versions of its "programs," are closely connected to the intuitive idea of
specification. Execution and testing of PROLOG programs illuminates the
prototype aspect of operational languages.

A PROLOG program consists of an unordered collection of first-order logic
formulas, each in the restricted form of a universally-quantified implication
with conjunctive antecedent and disjunctive consequent [5]. The program may
be thought of as a set of axioms, to be used by a (resolution) theorem prover.
The theorems whose proofs are attempted provide PROLOG's input/output. Call a
formula to be proved an "I/O formula." An I/O formula must be an
existentially quantified conjunction. If it has no variables, the output is
the TRUE/FALSE response of the theorem prover. Similarly, if an I/O formula
with variables is not a theorem, the output is FALSE. Otherwise,. an I/O
formula is a theorem because particular constants do satisfy its unquantified
form, and the PROLOG output in that case is the value of the satisfying
constants. The input may be thought of as parts of the I/O formula not
containing variables.

I

For example, the PROLOG program:

plus(X, [], X).

plus(X, b.Y, b.Z) <-- plus(X, Y, Z).

• defines a predicate intended to hold of lists of b's if the third parameter is
the unary sum of the first two, zero being represented by the empty list [].
With the I/O formula

plus(b.b.[], b.[3, Q).

the output is a value for Q (b.b.b.[]), and the input-output correspondence
is straightforward. Because the addition function is invertible, any of the
parameters can be calculated from the other two in the same way. With the I/O

formula

plus([, b.[], b.b.[D.

the result is FALSE from the theorem prover, and similarly for

| pplus(X, b.b.[], b.[).

The I/O formula

plus(U, V. b.b.[]).

yields three possibilities -'or (U, V) pairs:

I7

* b.b.[], [
b.[3, b.[]
[3, b.b.[3

but

plus(b.[], U, V).

has an unlimited number of satisfying pairs:

[3, b.[]
b.[3, b.b.[]

Because of the way the program is written and the resolution proof technique,

the results from

plus(U, b.b.[1, V).

are a kind of symbolic execution instead of an unlimited table:

V is b.b.U

and

plus(U, V, W).

results in triples (U, V, W) which are a mixture of generated test data and
symbolic execution:

U, [], U
U, b.[], b.U
U, b.b.[], b.b.U

A programming style for PROLOG comes from logic. (The sample above is
from the usual formulation of number theory, for example.) This style is
difficult to characterize, but one variant recalls the Gist idea of generating
more than the behaviors of interest, then pruning them. To define predicate
P one instead defines Q that is less restrictiv than P , then defines R
to include further restrictions, and P as Q /\ R . For example, in the
definition of the Kleene T-predicate for Turing machines, the idea of sequence
is defined, and then successively restricted to sequences of instantaneous
descriptions, then to such sequences that can legally arise from a machine,
then finally to such sequences that begin and end properly [6). The virtue is
this kind of programming is that it decomposes a problem into easily
understood parts. If PROLOG is used in this way, the addition of each
predicate further restricting the solutions may be thought of as successive
approximations to the problem specification, and the intermediate programs as
partial specifications.

The only difficulty in testing PROLOG programs arises from inefficiency of
the theorem prover: if there are several output values, some more difficult
to discover, then the human user may become impatient, and judge the
specification on only part of its behavior. However, this effect is not
perniciously connected with unfinished specifications: it is unlikely that
omitting restrictions will make easily found outputs the ones a user hopes
for. Resolution is an unnatural computing device, in the sense that human
beings find it difficult to predict how unification will proceed. A
comparison with the concurrent-process languages is apt: the semantics of

8

PROLOG defines the output from an I/O formula to be all constants satisfying
its unquantified form, and we fault the theorem prover for generating them too
slowly. The semantics of concurrent computation defines correct output as any
of the possibilities that arise from process activation sequences; if all
possibilities were required, the same kind of exponential times would result.
This is seen in Gist where the constraints may require many of the
possibilities to be investigated. Indeed, a PROLOG interpreter can be thought
of as a Gist specification in which all terms of the Herbrand universe are
generated, with the PROLOG program as constraints. There seems as little
reason for accepting any process sequence, when we do not understand all the
possibilities, as for accepting any output from a PROLOG program, when we do
not understand the resolution computation.

4. Discussion: Testing System Specifications

Testing always has a two-fold purpose. Initially, it is to find mistakes in a
system, and aid in their correction. When no more mistakes can be found, the
test data assumes the new role of establishing confidence that there are no
more mistakes to find. In so-called "black box" (or "functional") testing the
software's overt, external behavior alone is of interest, without regard for
its internal structure. The difficulty with black-box testing in concurrent
systems is that the required behavior is distributed in space and time. A
system for process control, for example, is required to read sensors and drive

actuators in a complex time sequence, so that generating realistic test cases
may be difficult. The alternative to black-box testing is called "structural"
(or "program based") testing, in which an attempt is made to investigate code
usage. The idea is that mistakes must lie textually within the software
sources, and will not be found unless all parts are exercised in some way.
Structural methods differ in what they consider as "exercised;" for concurrent
systems it must include trying different orderings for the processes involved.

For specification languages there are additional testing problems
introduced by implementation and by unfinished specifications. A specification
is an object in its own right, and its internal proper' es (such as
consistency) are of interest. But eventually it will be implemented in an
efficient way, perhaps with a software structure rather unlike the
specification. Direct tests of the specification can be misleadingly
successful in that an implementation that meets the specification can fail
that same test. When the specification includes a portion that models the
environment, and which is not implemented, the implementation may have to
preserve the same structure as the specification in order that specification
tests can be used. Testing an unfinished specification exacerbates these
difficulties, because missing portions rely on human simulation of the
system's behavior, which may be based on wishful thinking.

41.1 Structural Tests of Concurrent Software

An advantage of structural over black-box testing is that the generation of
test data is methodical. For example, if the structural exercise criterion is
that every statement must be executed, a programmer usually has little
difficulty devising the needed data. The structural criterion that there
should be some kind of coverage of the many possible patterns of process
orderings is more difficult to achieve. For a given input, there are several
common possibilities: (1) the software is supposed to synchronize its
processes so that the process ordering is fixed; (2) although many process
orderings are possible, the overt behavior of the system is not supposed to
depend on which one occurs; (3) different behavior results from different

9

ordering. A test that attempts to vary the process ordering will have
different outcomes for these cases; neither specification nor programming
languages have ways to indicate the intent.

A kind of "stress testing" can be applied to concurrent software by
tampering with processes' scheduling. Each process can be given the highest
(or lowest) priority in turn; if the number of open scheduling decisions is
small, all possible priority patterns can be tried, giving an exhaustive test
of orderings. It should also be useful to try disciplines unlikely in
practice, such as random scheduling, or scheduling by longest time since
previous activation. In controlling the testing of concurrent software to
meet structural coverage criteria, it may be necessary to use sophisticated
tools [7).

Specifications probably should not include explicit information on
scheduling (the Gist constraints and PAISLey timing information are an attempt
to describe the "what" of scheduling decisions without the "how").
Implementations, however, may have to resort to fine control of scheduling to
perform as required. This means that an implementation test may have very
little ordering freedom compared to a specification test, and it may prove
possible to cover the possibilities much better in the former.

4.2 Problems of Implementation

A specification expressed in a formal language is useful in communicating
development decisions to users in the form of testable prototypes. However,
the point is lost if successful specification tests (which convince.a user
that requirements are being met) become test failures for the final
implementation. A more subtle difficulty is that the specification may
describe both the environment and the computer system, while only the latter
is implemented. If there are improper connections between the two parts of
the specification, it may work where no implementation can. For example, it
is clearly improper to have an environment process respond to the software
state as in a "requirement" that a person not push some button when a variable
has certain values. To include such interactions makes it impossible to test
for their violation in the specification; the implementation is likely to have
to deal with them early on.

A correct implementation of a Gist or PAISLey specification must
intuitively agree with the specified behavior. The difficulty in precisely
defining this idea is that "input-output" is woven into specifications by
including processes that are part of the environment and thus not to be
implemented. In Gist an environment demon alters the universe (for example by
creating an object), a kind of "input" to which the remainder of the system
responds, resulting in a changed universe that might be called the "output."
In PAISLey, an environment process can match exchange functions with those in

-. the system portion, the former's parameters then acting as "input" and the
latter's as "output." In both cases the situation is complicated by timing:
the demon or process can supply its inputs in a complex pattern. This kind of
behavior is essential in the specification of embedded systems, whose
environments do act in a patterned fashion.

An implementation will be judged by how well it responds to the real-world
environment. Users should be making a judgement of how well the world is
simulated in the specification, independent of the system part of the
specification. Insisting on an independent environment prototype also insures
that the interface to the system is proper--that the environment does not use
or supply information it is not meant to. Neither PAISLey nor Gist controls
this interface: the power of these languages hides it. For example, a Gist

10

environment demon could be constrained by a relation using system information;
in testing the whole specification it would be very difficult for a user to
detect that the proper behavior was the result of the world being careful not
to strain the computer. But if the environment were tested separately, the
improper relation would come up undefined, and the user has a chance of
noticing it.

If there is an identified environment portion to each specification, one
capable of output-input behavior in isolation, an implementation can be
defined as correct if it interacts with the specification environment as the
specification system does. That is, for each specification environment
behavior, the implementation responses interleave with those of the
environment to form at least one pattern that the specification system itself
forms. This definition allows investigation of the relationship between
successful tests of the specification and those same tests applied to an
implementation.

When an implementation test is conducted, the specification should serve
as an oracle--it should be able to answer unambiguously that the test result
is or is not correct. This is possible only if all th. process orderings of
the specification are tried. (The nondeterminism of a concurrent
implementation itself poses a distinct problem: all of its behavior sequences
for each test input must be examined as well.) When an implementation is
correct, it may be difficult to find the execution of the specification that
shows it to be so. If it is incorrect, only exhaustive testing of the
specification suffices to learn this. From another viewpoint, if a user has
experimented with the specification and believes it to fulfill his
requirements, if he has missed any of the behavior possibilities, a correct
implementation can deliver a nasty shock.

Unfinished specifications only exacerbate all of these difficulties. It
makes little sense to work with a partial environment specification, since the
system is then responding to a world that will never be, and it is immaterial
whether it can do so. When a partial system specification is being tested,
there are more possible behaviors than finally intended, and this multiplies
the chance of missing important ones. When the human user controls sequencing
or supplies information that does so, it is likely that he will favor those
sequences that were intended at the expense of unexpected ones, again
increasing the chance that an implementation will be correct, but
unacceptable.

Ackaowledgenent

This paper was written for a panel session at the Hawaii International
Conference on Computer and System Sciences. Pamela Zave, Bob Balzer, and Jack

;'T" Wileden are responsible for the work referenced, but of course not for my
attempts to describe it. Without Bill Howden, this paper would not have been
written, because he first said it would appear In the conference proceedings
(sight unseen), and when it was ready changed his mind (sight unseen).

Refereoes

1. P. Zave. An operational approach to requirements specification for
embedded systems, IEEE Transactions on Software Engineering SE-8 (May, 1982),
250-269.

11

2. P. Zave, Testing incomplete specifications of distributed systems, Proc.
ACM Symposium on Principles of Distributed Computing, Ottawa, 1982, 42-48,

3. R. Balzer, N. Goldman, and D. Wile, Operational specification as the basis
for rapid prototyping, ACM SIGSOFT Workshop on Rapid Prototyping, Columbia,
Md., April, 1982.

4. R. Balzer, Design specification validation, Rome Air Development Center
Technical Report RADC-T-81-102, 1981.

5. R. A. Kowalski, Algorithm = logic + control, CACM 22 (July, 1979), 424-
436.

6. R. G. Hamlet, Introduction to Computation Theory, Intext, 1974.

7. P. C. Bates and J. C. Wileden, EDL: a basis for distributed system
debugging tools, Proc. 15th Hawaii International Conference on System
Sciences, Honolulu, 1982. 86C-93.

|0

4v

1

122

